Yzabel / June 17, 2018
Review: The Equations of Life
The Equations of Life: How Physics Shapes Evolution by Charles S. Cockell
My rating: [rating=5]
Blurb:
A groundbreaking new view on the theory of evolution, arguing that life develops in predictable ways
We are all familiar with the popular idea of strange alien life wildly different from life on earth inhabiting other planets. Maybe it’s made of silicon! Maybe it has wheels! Or maybe it doesn’t. In The Equations of Life, biologist Charles S. Cockell makes the forceful argument that the laws of physics narrowly constrain how life can evolve, making evolution’s outcomes predictable. If we were to find on a distant planet something very much like a lady bug eating something like an aphid, we shouldn’t be surprised. The forms of life are guided by a limited set of rules, and as a result, there is a narrow set of solutions to the challenges of existence.
A remarkable scientific contribution breathing new life into Darwin’s theory of evolution, The Equations of Life makes a radical argument about what life can–and can’t–be.
Review:
[I received a copy of this book from NetGalley.]
Well, that was a pretty informative read. A little difficult to get into at times (although I suspect half of it was because I was trying to read it when I was too tired), but definitely informative.
To be honest, I’m not that well-versed in equations in general. I can solve basic linear equations with two unknowns, that kind of thing; just don’t ask me to memorise really complex ones. So, I admit that, at first, I was hesitant to request this book, thinking that maybe it’d be out of my reach. Fortunately, while it does deal with equations, it’s not just page after page filled with numbers and symbols, and the author does explain what each term of each equation stands for. In the end, this was all fairly understandable, both the math and the writing itself.
The book doesn’t simply deal with equations either, and delves into astrobiology and basic atomic and particles physics (electrons -are- subatomic particles, after all, and knowing what part they play in atomic interactions is useful to understand what exactly happens at the biological molecular level, too). In fact, I found that a couple of chapters do fit in nicely with quantum theory, if you’re interested in that as well, since they explain essential interactions at shell level. I hadn’t studied chemistry since… at least 21 years, but this sent me back to my old classes, and I realised that I still possessed the required knowledge to get what the author was talking about. Which is great, because 1) I’m interested, 2) I like it when I grasp something that old me would’ve dismissed as ‘too hard’, 3) did I say I’m interested?
Last but not least, the book also contains a list of references that I’ll try to check at some point. Not all of them, of course, but since he points to Sean B. Carroll and his works on evo-devo, that’s a win in my little world.
All in all, this was a set of really interesting and intriguing theories, theories that make a lot of sense when you think about it and take time to observe nature around you. (Why did animals develop legs and not wheels? Well, inequal terrain and all that… Logics, logics…) And if you’re wondering about the possibility of other forms of life, either carbon-based on other planets or not even carbon-based, the author also explores this, going to demonstrate why it may or may not work (hence why a basic lesson in chemistry is provided). A solid 4.5 stars for me (I just think it dragged slightly in the last chapter).